/* * Conrec.java * * Created on 5 August 2001, 15:03 * * Copyright (c) 1996-1997 Nicholas Yue * * This software is copyrighted by Nicholas Yue. This code is base on the work of * Paul D. Bourke CONREC.F routine * * The authors hereby grant permission to use, copy, and distribute this * software and its documentation for any purpose, provided that existing * copyright notices are retained in all copies and that this notice is included * verbatim in any distributions. Additionally, the authors grant permission to * modify this software and its documentation for any purpose, provided that * such modifications are not distributed without the explicit consent of the * authors and that existing copyright notices are retained in all copies. Some * of the algorithms implemented by this software are patented, observe all * applicable patent law. * * IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, * EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN * "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE * MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ /** * Conrec a straightforward method of contouring some surface represented a * regular triangular mesh. * * Ported from the C++ code by Nicholas Yue (see above copyright notice). * * @see http://astronomy.swin.edu.au/pbourke/projection/conrec/ for full * description of code and original C++ source. * * @author Bradley White * @version 1.0 */ public class Conrec { private double[] h = new double[5]; private int[] sh = new int[5]; private double[] xh = new double[5]; private double[] yh = new double[5]; // Object that knows how to draw the contour private Render render = null; /** Creates new Conrec */ public Conrec(Render render) throws Exception { if(render == null) { throw new Exception("Render null"); } this.render = render; } /** * contour is a contouring subroutine for rectangularily spaced data * * It emits calls to a line drawing subroutine supplied by the user which * draws a contour map corresponding to real*4data on a randomly spaced * rectangular grid. The coordinates emitted are in the same units given in * the x() and y() arrays. * * Any number of contour levels may be specified but they must be in order * of increasing value. * * * @param d - * matrix of data to contour * @param ilb,iub,jlb,jub - * index bounds of data matrix * * The following two, one dimensional arrays (x and y) contain the * horizontal and vertical coordinates of each sample points. * @param x - * data matrix column coordinates * @param y - * data matrix row coordinates * @param nc - * number of contour levels * @param z - * contour levels in increasing order. * */ public void contour(double[][] d, int ilb, int iub, int jlb, int jub, double[] x, double[] y, int nc, double[] z) { int m1; int m2; int m3; int case_value; double dmin; double dmax; double x1 = 0.0; double x2 = 0.0; double y1 = 0.0; double y2 = 0.0; int i, j, k, m; // The indexing of im and jm should be noted as it has to start from // zero // unlike the fortran counter part int[] im = { 0, 1, 1, 0 }; int[] jm = { 0, 0, 1, 1 }; // Note that castab is arranged differently from the FORTRAN code // because // Fortran and C/C++ arrays are transposed of each other, in this case // it is more tricky as castab is in 3 dimension int[][][] castab = { { { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } }, { { 0, 3, 4 }, { 1, 3, 1 }, { 4, 3, 0 } }, { { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } } }; for(j = (jub - 1); j >= jlb; j--) { for(i = ilb; i <= iub - 1; i++) { double temp1, temp2; temp1 = Math.min(d[i][j], d[i][j + 1]); temp2 = Math.min(d[i + 1][j], d[i + 1][j + 1]); dmin = Math.min(temp1, temp2); temp1 = Math.max(d[i][j], d[i][j + 1]); temp2 = Math.max(d[i + 1][j], d[i + 1][j + 1]); dmax = Math.max(temp1, temp2); if(dmax >= z[0] && dmin <= z[nc - 1]) { for(k = 0; k < nc; k++) { if(z[k] >= dmin && z[k] <= dmax) { for(m = 4; m >= 0; m--) { if(m > 0) { // The indexing of im and jm should be noted // as it has to // start from zero h[m] = d[i + im[m - 1]][j + jm[m - 1]] - z[k]; xh[m] = x[i + im[m - 1]]; yh[m] = y[j + jm[m - 1]]; } else { h[0] = 0.25 * (h[1] + h[2] + h[3] + h[4]); xh[0] = 0.5 * (x[i] + x[i + 1]); yh[0] = 0.5 * (y[j] + y[j + 1]); } if(h[m] > 0.0) { sh[m] = 1; } else if(h[m] < 0.0) { sh[m] = -1; } else sh[m] = 0; } // // Note: at this stage the relative heights of the // corners and the // centre are in the h array, and the corresponding // coordinates are // in the xh and yh arrays. The centre of the box is // indexed by 0 // and the 4 corners by 1 to 4 as shown below. // Each triangle is then indexed by the parameter m, // and the 3 // vertices of each triangle are indexed by // parameters m1,m2,and // m3. // It is assumed that the centre of the box is // always vertex 2 // though this isimportant only when all 3 vertices // lie exactly on // the same contour level, in which case only the // side of the box // is drawn. // // // vertex 4 +-------------------+ vertex 3 // | \ / | // | \ m-3 / | // | \ / | // | \ / | // | m=2 X m=2 | the centre is vertex 0 // | / \ | // | / \ | // | / m=1 \ | // | / \ | // vertex 1 +-------------------+ vertex 2 // // // // Scan each triangle in the box // for(m = 1; m <= 4; m++) { m1 = m; m2 = 0; if(m != 4) { m3 = m + 1; } else { m3 = 1; } case_value = castab[sh[m1] + 1][sh[m2] + 1][sh[m3] + 1]; if(case_value != 0) { switch(case_value) { case 1: // Line between vertices 1 and 2 x1 = xh[m1]; y1 = yh[m1]; x2 = xh[m2]; y2 = yh[m2]; break; case 2: // Line between vertices 2 and 3 x1 = xh[m2]; y1 = yh[m2]; x2 = xh[m3]; y2 = yh[m3]; break; case 3: // Line between vertices 3 and 1 x1 = xh[m3]; y1 = yh[m3]; x2 = xh[m1]; y2 = yh[m1]; break; case 4: // Line between vertex 1 and // side 2-3 x1 = xh[m1]; y1 = yh[m1]; x2 = xsect(m2, m3); y2 = ysect(m2, m3); break; case 5: // Line between vertex 2 and // side 3-1 x1 = xh[m2]; y1 = yh[m2]; x2 = xsect(m3, m1); y2 = ysect(m3, m1); break; case 6: // Line between vertex 3 and // side 1-2 x1 = xh[m3]; y1 = yh[m3]; x2 = xsect(m1, m2); y2 = ysect(m1, m2); break; case 7: // Line between sides 1-2 and // 2-3 x1 = xsect(m1, m2); y1 = ysect(m1, m2); x2 = xsect(m2, m3); y2 = ysect(m2, m3); break; case 8: // Line between sides 2-3 and // 3-1 x1 = xsect(m2, m3); y1 = ysect(m2, m3); x2 = xsect(m3, m1); y2 = ysect(m3, m1); break; case 9: // Line between sides 3-1 and // 1-2 x1 = xsect(m3, m1); y1 = ysect(m3, m1); x2 = xsect(m1, m2); y2 = ysect(m1, m2); break; default: break; } // Put your processing code here and comment // out the printf //printf("%f %f %f %f // %f\n",x1,y1,x2,y2,z[k]); render.drawContour(x1, y1, x2, y2, z[k]); } } } } } } } } private double xsect(int p1, int p2) { return (h[p2] * xh[p1] - h[p1] * xh[p2]) / (h[p2] - h[p1]); } private double ysect(int p1, int p2) { return (h[p2] * yh[p1] - h[p1] * yh[p2]) / (h[p2] - h[p1]); } }